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On the breakdown of characteristics solutions in flows 
with vibrational relaxation 
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(Received 30 March 1966) 

The breakdown of the characteristics solution in the neighbourhood of the 
leading frozen characteristic is investigated for the flow induced by a piston 
advancing with finite acceleration into a relaxing gas and for the steady super- 
sonic flow of a relaxing gas into a smooth compressive corner. It is found that the 
point of breakdown moves outwards along the leading characteristic as the 
relaxation time decreases and that there is no breakdown of the solution on the 
leading characteristic if the gas has a sufficiently small, but non-zero, relaxation 
time. A precise measure of this relaxation time is derived. The paper deals only 
with points of breakdown determined by initial derivatives of the piston path 
or wall shape. In  the steady-flow case, the Mach number based on the frozen 
speed of sound must be greater than unity. 

1. Introduction 
In flows with a finite, non-zero relaxation time, the characteristics of the 

equations are those determined by the frozen flow, that is, by a flow in which the 
relaxation time is infinitely long. Further, the limit of the relaxation time r 
tending to zero is singular. The implications are shown markedly in the following 
problem. A piston moves from rest with finite acceleration into a relaxing gas. 
We would expect the solution to break down after a critical time determined by 
the cusp of the envelope of the intersecting forward characteristics emanating 
from the piston, but that the cusp need not necessarily lie on the leading frozen 
characteristic. On the one hand, we can state that, if the flow is frozen, the cusp 
will lie on the leading frozen characteristic. On the other hand, if the gas is in 
equilibrium, the characteristics are no longer the frozen characteristics and the 
cusp will lie on the leading equilibrium characteristic. This is shown in figure 1. 
The velocity a, is the frozen speed of sound; a* is the equilibrium speed of sound. 
The development of the flow as r decreases from infinity to zero is not im- 
mediately obvious. The present investigation is concerned with the breakdown 
of the solution in the neighbourhood of the leading frozen characteristic. We shall 
find that there exists a value of r, strictly greater than zero, below which coin- 
cident characteristics from the origin do not intersect. 

The analysis of the corresponding problem in two-dimensional steady flow is 
also given. In  this case, a relaxing gas moving along a plane wall with a speed 
greater than the frozen speed of sound encounters a smooth, compressive corner. 
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The solution in the neighbourhood of the first disturbed forward characteristic is 
discussed. 

The methods used are those of Jeffrey & Tanuiti (1964). In  these, the flow field 
is mapped onto itself, points a t  which characteristics of the same family intersect 
appearing as critical points of the mapping. We shall describe the methods in the 
particular context of the problem under consideration, for the reader’s con- 
venience; this is not intended to be either a rigorous development or a full 
exposition. For a more detailed explanation, the reader should consult Jeffrey & 
Tanuiti (1964); those readers who wish to savour the full subtlety of the tech- 
niques must consult Courant & Hilbert (1962). 

FIGURE 1 

2. One-dimensional unsteady flow 
In  formulating the equations of motion, we use the heat-sink analogy of 

Johannesen (1961) which exploits the exact correspondence between the flow of 
a gas of variable specific heats with relaxation and the flow of a gas of constant 
specific heats, Johannesen’s alpha gas, to which heat is added or from which heat 
is extracted at the rate at which energy is released from or absorbed by the 
vibrational mode of the real gas. @ is the relaxation frequency and the symbols 
p ,  u, p, S, T and a are the properties of the alpha gas with the meanings usually 
attributed to them in gas-dynamics. It should be noted that T is the translational 
temperature and that the alpha gas is involved in a non-isentropic process even 
in the absence of shock waves. The quantities p ,  u,p and T ,  the translational 
properties of the gas, are unambiguously defined; the sound speed a is identical 
to the frozen sound speed of the real gas, but the entropy S is a property only of 
the fictitious alpha gas; it  is related to p and p by the equation 

p = p~ exp ((AS - S’)/Cu}. 

It does not, in general, bear any simple relation to the properties of the real gas. 
The quantity cr is defined by the fourth equation in terms of the translational 
properties of the gas. The technique involves precisely the approximation 
inherent in considering a perfect gas with shock waves to be in thermodynamic 
equilibrium, and no more. 
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ap au 
at ax ax 
g+u-+p- = 0, 

au au l a p  
-+u-+-- = 0, 
at ax pax  

where a denotes the vibrational energy and a its local equilibrium value. 
Recasting the equations, they take the form 

U,+AU,+B = 0, 

where U = { a u X a } ,  

and 

U 

0 

0 

0 

a2 
- Y(Y - 1) QIJ 

U 

0 

0 
U I 

where we use braces { } to denote a column vector. Let hi be the eigenvalues of A ;  
then 2 = u & a, h39 4 = u. Let Li be the corresponding left eigenvectors; then 

and 
L3 = (0 0 1 O ) ,  

L4 = (0 0 0 1). 

Let $(x ,  t )  = 0 be a wave front, with (s > 0 corresponding to the region ahead of 
the wave. Let us introduce co-ordinates (t‘, q5) where t’ = t and q5t+h+q5, = 0, 
where A+ is the eigenvalue corresponding to the wave front. Then 

Li( lJ + AfU,) + LfB = 0, 

where we have used the relation LiA = h W .  That is, LjdU + LiBdt = 0 along 
dx/dt = hi, the generalization of the Riemann invariants. Transforming from 
( t ,  x) to (t’ ,  q5)  co-ordinates, this becomes 

If hj = A$, then we have 
L+qf+ L+B = 0. 

We concern ourselves here with waves for which 
case is unnecessarily comprehensive for our purposes. 

is a single root; the general 

4-2 
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We may use this relation to establish a feeling for the physics of the pheno- 
menon by investigating the infinitesimal triangle near t = 0 bounded by the 
frozen forward characteristic from t = 0, the piston path, which is a particle 
path, and a suitable backward characteristic (see figure 2). One can show after 
a little manipulation that the presence of relaxation reduces the magnitude of 
u + a at B compared with its value in the absence of relaxation. That is, the point 
of intersection of the positive characteristics from 0 and B moves outwards. 

FIGURE 2 

Returning to the analysis; the solution may have discontinuities with respect 
t o  # at g5 = 0, so that U and i& are both continuous at  g5 = 0, but there may be a 
jump II(t ') = [U+]$=!T in U$ anda jump X( t ' )  = [x$]$z!+ inx4. Theessential point 
of the analysis is contained in the equation 

x+x+j+=,+ = X$l$=O-. 

For, x+I+=,+, which we denote by (x+),, is determined by conditions ahead of the 
wave and is finite. Therefore, X + I + ~ -  is non-zero, that is the transformation is 
non-singular, if and only if X + (x+)~ =+ 0 and is finite. We see that, since x+ = l/#z, 
then along the curve q5 = 0 we have U, = U,lx$, so that if x+ + 0 for finite U$, 
U is no longer continuous. 

If U, corresponds to conditions ahead of the wave, then B(Uo) = 0. From 
(1)  with hi + A+, differencing across q5 = 0 gives 

L$ II = 0 (A j  =+A@), ( 2 )  

and from (1) with hj = A$, we have 

L$l$+ L$B = 0. 

Differentiating with respect to #, we have 

Lo(U$)y+ [(V,L+) U$]'q,+ [V,(L$B)] U$ = 0, 

where a dash superscript denotes the transpose, and V, denotes the gradient 
operator in U-space. Across the wave front, this gives 

(3) rIL, + [V,(DB)] rI = 0, 
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since L$. is continuous and equal to zero on q5 = 0 + . Now, along 4 = constant, 
we have that axlat‘ = A@, so that 

aq a rX) at 
a 
- (X$) = - 7 = (V,A+) U$. 
ati 

Differencing across q5 = 0,  we obtain 
x, = (V, A$)o rI. 

Let us now define the limit @ of any quantity Q by the relation @ = lim Q 

where the limiting process is carried out in 4 = 0 - for all continuous quantities 
and on q = 0 for all jump quantities. Then, integrating the above relation, 
we have 

Now 2 = iE$ - (Z$),, so that 

t’+O 

x = 2 + (0, A@), rI dt’. 1: 
X + ( X $ ) O  = iE @ +st (V,M), rI dt‘. 

Therefore, if we define t ,  by the relation 

we see that X + (x&, is zero, that is x416=o- is zero, at t = t,. Hence, t = t, is a 
critical point of the mapping, that is, at t = t, the transformation has become 
singular, so that the characteristics in the neighbourhood of (6 = 0 have 
intersected. 

Since fi = ox iE@, the relation for t, may be written in the form 

0 = n/ox + (V, A$) rI dt’. 1: 
( 2 )  gives 

and 

and since 

IT, = IT* = 0, 

2 n,+ IT, = 0, -~ 
Y-1 

LIB = pO(3- (T) a/(yC, T ) ,  

we have that [V,(L1B)I0 = (-) PQa qo 0 0 - 1) ,  
YGT o\aa 

where we have used the fact that, in the undisturbed region ahead of the wave, 
cr = 3. From (3), we have 

- 
Hence IT = n,exp ( - c* t ‘ )  ( i ( y -  1) 1 0 01, 

where 

which is greater than zero. Also, 
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so that the equation for t, becomes 

or 

J O  

t, = --log 1 l--(c*/-G,)). 2 
c* ( y + l  

There are two interesting limiting cases. First, c* = 0, corresponding to Q) = 0, 
or completely frozen flow. Then t, = [ 2 / ( ~ +  l)] ( I /  - G,), which is positive for an 
advancing piston and negative for a receding piston. Now 

a2 aS _ -  au 2 aa au 
-+---a-+u-- - 0, at 7-1 ax ax Y(Y- i )C; ,ax  

so that 
2 

ill+--- ao6, = 0, 
Y-1 

since uo = 0 and (Sx)o = 0. We have already shown that 

so that 

Hence Cl = - a,C,. Substituting for 4,, we have that t, = [a/(? + l)] (ao/Gl), which 
is the familiar result for the position of the cusp in terms of the initial piston 
acceleration. For flows with large relaxation times, so that c*/( - C,) 4 1, we may 
expand the logarithm in powers of e = c * / (  - ii,) to obtain 

t ,  = [I + 24(y + 1) + . . .], 
where (t,)m = [ 2 / ( 7 +  1)  ( l / - G x )  is the value of t, in a completely frozen flow. 
Later, we shall use ( tJm as a yardstick by which the magnitude of the relaxation 
time may be measured. For a given piston path, (tJm is a constant. 

Secondly, we note that the argument of the logarithm, 1 - [2 / (y  + l ) ]  (c*/ - G,), 
is less than or equal to unity and decreases as c" increases for a given piston path. 
When c* = +(Y + 1) ( - C,), the argument is zero, that is t, is infinite, so that there 
is no breakdown in the neighbourhood of #J = 0. This relation is a relation 
between the thermodynamic properties of the gas and the initial acceleration of 
the piston. In particular, it implies that, for a given piston path, the critical time 
t, increases from its minimum value (t& as r decreases from infinity and becomes 
infinitely large at  a finite non-zero value of r,  say 7,. 

We are now in a position to view in its entirety the effect of vibrational relaxa- 
tion on simple waves. For a rarefaction wave in a perfect gas, gradients of flow 
properties decrease along forward characteristics like l i t ,  by virtue of the 
divergence of the set of straight characteristics. In  the presence of relaxation, 
Wood & Parker (1958), among others, have shown that the gradients of flow 
properties decay exponentially; the more quickly relaxing the gas, the more 
rapid the decay. In the compressive case, for piston paths with finite initial 
accelerations and suitably chosen higher initial derivatives, gradients of flow 
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properties in a perfect gas increase along the leading characteristic like l / ( tc  - t )  
becoming infinite at the cusp. In  the presence of relaxation, the effect of the 
convergence of the characteristics is modified, as (4) shows, by a simultaneous 
exponential decay of derivatives, the more quickly relaxing the gas, the more 
rapid the decay except in the neighbourhood of the point of intersection of the 
characteristics; this point may or may not exist. 

To extend the analysis to investigate the interior of the flow field requires a 
knowledge of the flow field behind the initial wave. The method has been applied 
by Jeffrey (1964) to waves propagating into a non-uniform medium, but one 
whose non-uniformity is prescribed. The situation here is much more complicated. 

3. Two-dimensional steady flow 

compressive corner. The equations are 
We now outline the analysis for two-dimensional steady flow into a smooth 

as q- = -pa@- 
85 

where s measures distance along and n distance normal to a streamline, and 0 is 
the deflexion of the streamline from a suitable reference direction; qis the velocity. 
Recasting the equations in terms of q, a,  8, S and g, we have 

U,+AU,+B = 0, 

where U = (q u 8 S F>, 

yM2-1 M2-1 1 - M 2  
2yCvMT aMT aM 

0- -  

and 0 0 0 0 - 4  
M2- 1 

Y:la ~ M2 

(y  - 1) a&? ;-l y ( y - i j q M 2  1‘ ;I. 
0 0 0 0 0 
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The eigenvalues of A are Alp = 4 ( M 2 -  l)d, A374,5 = 0 ,  and the corresponding 
left eigenvectors are 

L3 = (i(y-1)M 1 0 0 O ) ,  

L4 = (0 0 0 1 O ) ,  

L5 = (0 0 0 0 l), 

Again B( U,) = 0 and ( 2 )  and (3) give 
n, = n5 = 0, 

and 

where we have transformed from (s, n)-co-ordinates to  (s', 4)-co-ordinates with 
s' = s and $st- = 0. Then 

- a M  y-1 a,M,2 
(ME-1)6 2 (Mt -1 )6  

N n = n,exp ( - a s ' )  0 - 0  __ 

where 

which is positive. If s = 0 corresponds to the beginning of the bend, then 

This may be written as 

where A+ is now taken as tan (p + O), and where II/+i$is unaltered; pis defined to be 
tan-l { ( M i  - 1)-*}. Evaluating the integral, we obtain 

x, = --log 1 [I- a(M; - 1)s 
a ( - on) i ( y  + 1) M$ tanPo 

It is easily shown that - on tan,uo = os, the initial curvature of the corner. Hence 

For completely frozen flow a = 0,  so that 
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which is the result obtained by Johannesen (1952); if 
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then x, is infinite. This relation again defines a minimum value of the relaxation 
time. 

4. The magnitude of q,, 
Let us now investigate the magnitude of r,, the value of the relaxation time 

below which the leading frozen characteristic suffers no breakdown. We have 
that 

where Cvi, is the specific heat of vibration. Therefore 

The value 7 = rm occurs when c* = &(y + 1)  ( - C,), so that 

The maximum value of C,,, for a diatomic gas is R and is attained a t  high 
temperatures, so that 7, has a maximum value 

and is less for lower temperatures. Now, for 7 = CQ, for a frozen gas, the value of 
t,, ( t Jm  is [2/(y+ l)] (l/-G,). Therefore, 

For the two-dimensional steady case, we have 

Note that although, as Mo + 1, a (' max is unbounded, (r,),,, N (Mg- l)i and 

(xJm N (HE - 1)Q, so that both tend to zero. 
( x c ) m  

The author wishes to  thank Professor N. H. Johannesen and Dr €I. I<. 
Zienkiewicz for many valuable discussions on the nature of flows with vibrational 
relaxation. 
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